Inverse quadratic interpolation method

1. Use three steps of the inverse quadratic interpolation method to approximate a root of the function $f(x)=\frac{\operatorname{def}}{x}+e^{-x}$ starting with $x_{0}=3.0 . x_{1}=3.2$ and $x_{2}=3.4$, but when discarding one of the previous results, always ensure that the root continues to be bracketed.

Answer: To ten significant digits, we have [3.0, 3.2, 3.4], [3.2, 3.267199145, 3.4],

[3.2, 3.266498284, 3.267199145], [3.266498284, 3.266500437, 3.267199145]

2. Use three steps of the inverse quadratic interpolation method to approximate a root of the function $f(x) \stackrel{\text { def }}{=} x^{3}-3 x+1$ starting with $x_{0}=1.4, x_{1}=1.5$ and $x_{2}=1.6$, but when discarding one of the previous results, always ensure that the root continues to be bracketed.

Answer: To ten significant digits, we have $[1.4,1.5,1.6]$, $[1.5, \mathbf{1 . 5 3 2 8 6 8 9 3 6}, 1.6]$, [1.5, 1.532085101, 1.532868936], [1.532085101, 1.5320888866, 1.532868936]
3. Consider finding the next approximation with $(-0.1,-0.1),(0.1,0.1),(0.2,0.5)$. Does the next iteration of Muller's method and the inverse quadratic interpolation method produce the same results?

Answer: No. The quadratic that interpolates $(-0.1,-0.1),(0.1,0.1),(0.2,0.5)$ is $10 x^{2}+x-0.1$ which has a root close to $1 / 10 \phi$, while the quadratic that interpolates the points $(-0.1,-0.1),(0.1,0.1),(0.5,0.2)$ is $-1.25 x^{2}+x+0.0125$ which has a constant coefficient 0.0125 .

